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The idea of working with a near-critical phase-separated liquid mixture whereby the surface tension be-
comes weak, has recently made the field of laser manipulation of liquid interfaces a much more convenient tool
in practice. The deformation of interfaces may become as large as several tenths of micrometers, even with the
use of conventional laser power. This circumstance necessitates the use of nonlinear geometrical theory for the
description of surface deformations. The present paper works out such a theory, for the surface deformation
under conditions of axial symmetry and stationarity. Good agreement is found with the experimental results of
Casner and DelvillefA. Casner and J. P. Delville, Phys. Rev. Lett.87, 054503s2001d; Opt. Lett. 26, 1418
s2001d; Phys. Rev. Lett.90, 144503s2003dg, in the case of moderate power or a broad laser beam. In the case
of large power and a narrow beam, corresponding to surface deformations of about 50 micrometers or higher,
the theory is found to over-predict the deformation. Possible explanations of this discrepancy are discussed.
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I. INTRODUCTION

The formation, deformation, and breakup of fluid inter-
faces are ubiquitous phenomena in naturef1g. One special
group of effects which implies the so-called finite time sin-
gularity f2g, has as its most common example the breakup of
pendant drops driven by gravityf3,4g. If external fields such
as electric or magnetic fields are present, one has in addition
extra control parameters. Thus we may mention that inter-
face instabilities driven by electric fieldsf5,6g are important
for many processes such as electro-sprayingf7g, ink-jet
printing f8g, or surface-relief patterningf9g. A uniform mag-
netic field can also be useful, for instance, for the purpose of
forming elongated magnetic dropletsf10g. These deforma-
tions, as well as those induced by the acoustic radiation pres-
sure on liquid surfacesf11,12g, have been used to explore the
mechanical properties of fluid interfaces in a noncontact way
f13,14g.

It is noteworthy that laser-induced deformations of the
interfaces of soft materials have not received the same
amount of interest in the past. Most attention has been given
to test-particle global effects such as optical levitation and
trapping—cf., for instance, Refs.f15,16g. The reason for this
circumstance is simple: Deformations of fluid interfaces by
optical radiation are ordinarilyweak. For instance, in the
classic experiment of Ashkin and Dziedzicf17g, a pulsed
single transverse mode doubled Nd:YAG lasers20 pulses per
secondd was focused vertically from above on a water sur-
face. The wavelength of the incident wave wasl0

=0.53mm, the peak power wasPmax=3 kW slow enough to
make nonlinear effects negligibled, and the duration of each
pulse was 60 ns. The beam radius at the waist was reported
to be very small,v0=2.1 mm, but has most likely been
somewhat larger,v0=4.5 mm; cf. the dicussion in Ref.f18g.
The rise of the water surface was small, about 0.9mm, oc-
curring att<450 ns after the onset of the pulse. The physical
reason for this small surface elevation is evidently the large
surface tensions=0.073 N/m between air and water.sThe
theory of the Ashkin-Dziedzic experiment was worked out in
Refs. f18,19g.d If we go to the more recent experiment of
Sakaiet al. f20g, we will find that the surface displacement
was even more minute. In this case the displacement was
induced by a continuous wavescwd Ar+ pump laserswave-
length in vacuuml0=0.514mm, maximum powerPmax
=0.5 Wd, and was probed with a He-Ne laser. For a beam
power P=0.3 W and a beam waistv0=142mm the eleva-
tion of the surface was found to be extremely small, about
2 nm.

Generally speaking it is of considerable interest to be able
to probe the displacement of fluid interfaces in a way that is
noncontact, i.e., which avoids a direct touch of the fluid by
mechanical devices. The only acting force on the fluid sur-
face is thus the radiation force. As discussed in Ref.f21g, for
instance, this kind of force can measure locally the microme-
chanical properties of soft biological systems because artifi-
cial membranesf22g or cellsf23g can be highly deformable.
Sizable effects of the radiation pressure should thus be mea-
sured, facilitating the characterization of surface elasticity
properties. A major step forward was to recognize that one
can reduce the surface tension considerably by working with
a phase-separated liquid mixture, close to the critical point.
In this way “giant” deformations can be achieved. Recent
experiments of Casner and Delville have shown that the dis-
placements can in this way reach several tenths of microme-
ters f21,24–27g scf. also the recent reviewf28gd. Also, there
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are seen in the experiments rather remarkable asymmetries
with respect to the upward/downward direction of the laser
beamf27g.

The giant deformations make it necessary to use nonlinear
theory for the description of the surface deflection. The pur-
pose of the present paper is to present such a calculation, for
the typical case where the elevation is axially symmetricsa
condition almost always satisfied in practiced, and in addition
stationary. Comparison with the mentioned experiments will
be made. We shall moreover assume that the laser beam is
incident from below only. The mentioned up/down asymme-
try will thus not be treated.

For completeness we emphasize that we are considering
nonlinear theory only in a geometrical sense, in order to
describe the interface bulge. The electromagnetic theory as
such is kept on the conventional linear level, as we are only
considering moderate laser intensities. The theory forlinear
deformations has been worked out beforef18,19,21,25g. The
analytic solution for the deflection of the surface is repro-
duced in Eq.s47d.

II. DERIVATION OF THE GOVERNING EQUATION

A. Basic electromagnetic theory

We begin by writing down the expression for the electro-
magnetic volume force densityf in an isotropic, nonconduct-
ing and nonmagnetic mediumf18,29g:

f = −
1

2
E2 ¹ « +

1

2
¹ FE2rS ]«

]r
D

S
G +

k − 1

c2

]

]t
sE 3 Hd.

s1d

Here E and H are the electric and magnetic fields,r is the
mass density of the mediumsfluidd, « is the permittivity, and
k=« /«0 is the relative permittivity where«0 denotes the per-
mittivity of vacuum.

Let us comment on the various terms in Eq.s1d, beginning
with the last term. This term is called the Abraham term,
since it follows from Abraham’s electromagnetic energy-
momentum tensor. The term is experimentally detectable un-
der special circumstances at low frequenciesf18g, but not at
optical frequencies, at least not under usual stationary condi-
tions. The Abraham term simply fluctuates out.

The middle term in Eq.s1d is the electrostriction term.
When seen from within the optically denser mediumsthe
medium with the highestnd, the electrostriction force is al-
ways compressive. Whether this kind of force is detectable in
a static or a stationary case, depends on whether the experi-
ment is able to measure local pressure distributions within
the compressed region or not. Moreover, in a dynamic case
the velocity of sound is an important factor. If the elastic
pressure in the fluid has sufficient time to build up, then the
electrostriction force will not be detectable when measuring
the gross behavior of a fluid such as the elevation of its
surface. Such is usually the case in optics. The time required
for the counterbalance to take place, is of the same order of
magnitude as the time needed for sound waves to traverse
the cross section of the laser beam. For a beam width around
10 mm, this yields a time scale for counterbalance of the

order of 10 ns. For instance, in the Ashkin-Dziedzic experi-
ment f17g a detailed calculation verifies this time scale; cf.
Fig. 9 in f18g.

Another point worth mentioning in connection with the
electrostriction term is that that we have writtens]« /]rdS as
an adiabatic partial derivative. This seems most natural in
optical problems in view of the rapid variations of the field,
at least in connection with laser pulses. In many cases it is,
however, legitimate to assume that the medium is nonpolar,
so that we need not distinguish between adiabatic and iso-
thermal derivatives. The permittivity depends on the mass
density only. Then derivative can be written simply as
d« /dr, and is calculable from the Clausius-Mossotti relation.
In this way we can write Eq.s1d in the following form, when
omitting the last term,

f = − 1
2«0E

2 ¹ k + 1
6«0 ¹ fE2sk − 1dsk + 2dg. s2d

Finally, we have the first term in Eq.s1d, which may be
called the Abraham-Minkowski force, since it follows
equally well from the Abraham and the MinkowskisAM d
energy-momentum tensors:

fAM = − 1
2«0E

2 ¹ k. s3d

This is the only term that we have to take into account in
practice in optics, under usual circumstances. We see that
this force is equal to zero in the homogeneous interior of the
medium, and acts in the inhomogeneous boundary region
only. By integrating the normal component of the Abraham-
Minkowski force density across the boundary, we obtain the
surface force density which can alternatively be evaluated as
the jump of the normal component of the electromagnetic
Maxwell stress tensor.

In the following we focus the attention on the force term
in Eq. s3d only.

B. Surface tension and radiation forces on a curved surface

Let us assume that there is established a stationary curved
surfacez=hsx,yd distinguishing two fluids, a lower fluids1d
and an upper fluids2d, the equilibrium position being deter-
mined by the balance of gravity, surface tension, and radia-
tion pressure. The undisturbed position of the surface is the
xy plane. Because of the surface tension coefficients, there
will be a normal stress proportional to the mean curvature of
the surface:

p2 − p1 = sS 1

R1
+

1

R2
D , s4d

R1 andR2 being the principal radii of curvature at the surface
point considered. IfR1 andR2 are positive,p2−p1.0. This
means that the pressure is greater in the medium whose sur-
face is convex. It is useful to have in mind the following
general formula for the mean curvature 1/R1+1/R2:

1

R1
+

1

R2
=

hxxs1 + hy
2d + hyys1 + hx

2d − 2hxyhxhy

s1 + hx
2 + hy

2d3/2 , s5d

wherehx=]h/]x, etc. Our convention is such that the curva-
ture is positive if the surface is concave upward. Also, we
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note that the unit normal vectorn to the surface is

n = s1 + hx
2 + hy

2d−1/2s− hx,− hy,1d. s6d

The normal points upward, from medium 1 to medium 2.
Assume now that there is a monochromatic electromag-

netic wave with electric field vectorEsidsr de−ivt incident from
below, in the positivez direction. The direction of the inci-
dent wave vectork i is thus given by the unit vector

k̂ i = s0,0,1d s7d

in medium 1. When this wave impinges upon the surface, it
becomes separated into a transmitted waveEstd and a re-

flected waveEsrd, propagating in the directions ofk̂ t and k̂ r,
respectively. We assume, in conformity with usual practice,
that the waves can locally be regarded as plane waves and
that the surface can locally be regarded as plane. The plane

of incidence is formed by the vectorsk̂ i andn; we call the
angle of incidenceui and the angle of transmissionut. See
Fig. 1. Moreover, we letEi andE' be the components ofE
parallel and perpendicular to the plane of incidence, respec-
tively. The expressions for the energy flux transmission co-
efficientsTi andT' for a plane wave incident upon a bound-
ary surface arescf. f29g, p. 496d:

Ti =
n2

n1

cosut

cosui
SEi

std

Ei
sidD2

=
sin 2ui sin 2ut

sin2sui + utdcos2sui − utd
, s8d

T' =
n2

n1

cosut

cosui
SE'

std

E'
sidD2

=
sin 2ui sin 2ut

sin2sui + utd
. s9d

When dealing with an unpolarized radiation field, one usu-
ally averages over the two polarizations and represents the
transmission coefficient by the single entity

kTl =
1

2
sTi + T'd. s10d

Consider now the electromagnetic surface force density,
which we will call P. As mentioned above,P can be found
by integrating the normal component of the volume force
density across the surface boundary layer. From Eq.s3d it
follows that the surface force acts normal to the surface, and
that it is directed toward the optically thinner medium.

We introduce the intensityI of the incident beam,

I = «n1ckEsid2l s11d

sin the case of azimuthal symmetryI = Isrdd, and leta denote
the angle betweenEsid and the plane of incidence,

Ei
sid = Esid cosa, E'

sid = Esid sina. s12d

Then, we can write the surface force density as

P = −
I

2c

n2
2 − n1

2

n2

cosui

cosut
fssin2 ui + cos2 utdTi cos2 a

+ T' sin2 agn. s13d

When Esid=Ei
sid or Esid=E

'

sid si.e., a=0 or p /2d it is often
convenient to expressP as

P =
n1I

c
cos2 uiS1 + R−

tanui

tanut
TDn, s14d

whereR=1−T is the reflection coefficient. This expression
has been derived beforef26,27,30g. It holds also in the hy-
drodynamic nonlinear case. In connection with the men-
tioned Bordeaux experimentsf21,24–27g, the upper liquid
was always the optically denser one. Thusn2.n1, the direc-
tion of P is antiparallel ton, and the force acts downward,
normal to the surface.

The case of normal incidence yields

Ti = T' =
4n1n2

sn2 + n1d2 , s15d

P = −
2n1I

c

n2 − n1

n2 + n1
n. s16d

C. Cylindrical symmetry

We henceforth assume cylindrical symmetry, using stan-
dard cylinder coordinatessr ,u ,zd. There is no variation in
the azimuthal direction,]h/]u=0. With the notationhr
=]h/]r we have

cosui =
1

Î1 + hr
2
, sinui =

hr

Î1 + hr
2
. s17d

Together with analogous expressions forut this can be in-
serted into Eq.s13d to yield

P = −
2n1Isrd

c

1 − a

1 + a
fshr,adn, s18d

wherea is the relative refractive index,

a = n1/n2 , 1, s19d

and fshr ,ad is the function

FIG. 1. Definition sketch of the displaced surface. The laser
illumination is from below.
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fshr,ad =
s1 + ad2

fa + Î1 + s1 − a2dhr
2g2

3Hsin2 a +
1 + s3 − a2dhr

2 + s2 − a2dhr
4

fahr
2 + Î1 + s1 − a2dhr

2g2
cos2 aJ .

s20d

When the surface is horizontal,hr =0, we havef =1, andP
reduces to the expressions16d.

A peculiar property of the expressions20d facilitating
practical calculations is that it is quite insensitive with re-
spect to variations in the polarization anglea, especially in
the case whena is close to unity, which is in practice most
important. Thus if we draw curves forPsuid vs ui for various
input values ofa in the whole region 0,a,90° snot shown
hered, we will find that the curves lie close to each other. For
practical calculations involving unpolarized light it is thus
legitimate to replacefshr ,ad by its average with respect toa.
As ksin2al=kcos2al=1/2, we canthen write the surface
force density as

P = −
2n1Isrd

c

1 − a

1 + a
fshrdn, s21d

where fshrd is equal tofsa ,hrd averaged overa,

fshrd = s1 + ad2

3
1 + s2 − a2dhr

2 + ahr
2Î1 + s1 − a2dhr

2 + hr
4

fa + Î1 + s1 − a2dhr
2g2fahr

2 + Î1 + s1 − a2dhr
2g2

.

s22d

This expression is valid also in the case of hydrodynamic
nonlinearity. Note again thatP is the normally directed force
per unit area of the obliqueliquid surface.

Finally, let us consider the force balance for the liquid
column, assuming stationary conditions. Whenn2.n1 the
surface tension force which acts upward, has to balance the
combined effect of gravity and electromagnetic surface
force, which both act downward. When the surface is given
ash=hsr ,ud, the mean curvature can be written as

1

R1
+

1

R2
=

1

r

]

]r

rhr

Î1 + hr
2 + shu/rd2

+
1

r2

]

]u

hu

Î1 + hr
2 + shu/rd2

,

s23d

with sign conventions the same as in Eq.s5d. Thus for azi-
muthal symmetry,

1

R1
+

1

R2
=

1

r

d

dr

rhr

Î1 + hr
2
, s24d

and the force balance becomesf26,31g

sr1 − r2dghsrd −
s

r

d

drF rhr

Î1 + hr
2G = Psrd. s25d

This equation follows from considering the equilibrium of a
liquid column having unit base area. HerePsrd is the pres-
sure scalar, i.e.,Psrd=Psrdn. ThusPsrd,0.

What expression to insert forPsrd in Eq. s25d, depends on
the physical circumstances. Thus in the case of an unpolar-
ized laser beam, we may use either the expressions14d with
R=kRl ,T=kTl, or alternatively use the expressions21d. We
will follow the latter option here. As noted, there is no re-
striction imposed on the magnitude of the slope of the sur-
face.

III. SOLUTION OF THE NONLINEAR EQUATION

It is advantageous to introduce nondimensional variables.
Let us first define the capillary lengthlC and the Bond num-
ber B,

lC =Î s

sr1 − r2dg
, B = Sv0

lC
D2

, s26d

v0 being the radius of the beam waist. The Bond number
describes the strength of buoyancy relative to the Laplace
force. If B!1, gravity is much weaker than the Laplace
force. sThe Bordeaux experiments covered the region 10−3

,B,4.d We then define the nondimensional radiusR and
the nondimensional heightHsRd as

R=
r

v0
, HsRd =

hsrd
lC

. s27d

The fact that in practicea=n1/n2 is very close to one, makes
it at first sight possible to simplify the right hand side of the
governing equations25d. Namely, from Eq.s22d one would
expect thatfshrd→1. However, the situation is more delicate
due to nonlinearity: If we keepfshrd in the formalism and
calculate the elevationhsrd, we will find that f gets a pro-
nounced dip within the region where the beam is strong.
Typically, if we draw a curve forf = fsRd versus the nondi-
mensional radiusR, we will see thatf drops from 1 to about
0.3 whenR lies about 0.5. Mathematically, this is because
the high steepness of the surface makeshr sor HRd large
enough to influencef significantly in a narrow region even
when a is close to unity. Assuming a Gaussian incident
beam,

Isrd =
2P

pv0
2e−2r2/v0

2
, s28d

with P the beam power, we may write the governing equa-
tion s25d as a nonlinear differential equation forH:

BH −

HRR+
1

R
HR +

1

BR
HR

3

S1 +
1

B
HR

2D3/2 = − Fe−2R2
fsHRd. s29d

HereF is a positive constant at fixed temperature,

F =
2sn2 − n1dP

pcgsr1 − r2dlC
3 , s30d

which can for practical purposes be written as, since
s]n/]rdT=−1.22310−4 m3/kg,
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F =
2

pcg
S−

]n

]r
D

T

P

lC
3 = 26 400

P

lC
3 . s31d

In the last equation, the dimension oflC is mm.
The two quantitieslC anda will vary with the temperature

T in accordance with the theory of critical phenomena. Thus
for the density contrastDr=r1−r2 we have

Dr = sDrd0ST − TC

TC
Db

, s32d

whereb=0.325,sDrd0=285 kg/m3, TC=308.15 K being the
critical temperature above which the mixture separates into
two different phases. Similarly

s = s0ST − TC

TC
D2n

, s33d

with n=0.63, s0=1.04310−4 N/m. More details can be
found in Refs.f21,25g. We give here the practically useful
formulas fora and lC:

a = 1 − 0.0238ST − TC

TC
D0.325

, s34d

lC = 193ST − TC

TC
D0.468

smmd. s35d

These two quantities are the only parameters that vary
with temperature. There are thus three parameters in all in
the problem, namelyT, the beam powerP, and the beam
waist v0. Nondimensionally, the last two parameters corre-
spond toF andB, Eqs.s31d and s26d.

A. Numerical solution

It is convenient to letH be positive downward, so that in
the formalism below we will replaceH with −H.

We start from the nondimensional governing equation in
the form

1

R

d

dRS RHR

Î1 + HR
2/B

D − BH = − Fe−2R2
fsHRd, s36d

with boundary conditions

HRs0d = 0, Hs`d = 0. s37d

We use a two-point method to solve the nonlinear differential
equation iteratively. Define

K = Î1 + HR
2/B, S= Fe−2R2

fsHRd, s38d

and letG=HR/K. We obtain the following first-order system:

dH

dR
= KG, s39d

dG

dR
+

G

R
− BH = − S, s40d

with boundary conditions

Gs0d = 0, Hs`d = 0. s41d

We linearize the equations by means of lagging, i.e., we use
values forHR from the last iteration in the nonlinear func-
tions K andS. Using a nonuniform grid withn grid points,
we integrate the equations between two grid pointsj and j
+1, lettingm be the midpoint andDRj the distance between
the points. We obtain

Hj+1 − Hj = Km
DRj

2
sGj + Gj+1d, s42d

Gj+1 − Gj +
1

Rm

DRj

2
sGj + Gj+1d − B

DRj

2
sHj + Hj+1d

= − DRjSm. s43d

HereHR in Km andSm are evaluated as

HR =
H̄j+1 − H̄j

DRj
, s44d

where theH̄’s are values from the previous iteration. Withn
grid points there aren−1 intervals andn−1 sets of equa-
tions. This confirms with the fact that there are 2n quantities
H andG; since there are two boundary conditions there re-
main 2n−2 equations in all.

To start the iterations we give initial values forH
=const.e−R2

. To deal with the boundary condition at infinity,
we need in practice to replace “infinity” with a finite upper
limit R=Re. The solution falls off quite slowly withR, so to
use the naive conditionHsRed=0 would requireRe to be very
large. To avoid calculating the long tail of the solution, we
can find a better boundary condition by using the lowest
order term in an asymptotic expansion forH. When R is
large, S,e−2R2

, and HR
2 is very small so thatS<0,

Î1+HR
2 /B<1. Equations40d becomes

1

R

d

dR
sRHRd − BH = 0. s45d

To lowest order this equation has the asymptotic solution
H,R−1/2e−ÎBR, which in turn implies that

G = HR = − S 1

2R
+ ÎBDH. s46d

We take this condition to replace the conditionH=0 at R
=Re.

We solved the discretized equations using a Block-
Bidiagonal-Matrix-Algorithm, developed by one of the au-
thors sS.H.d. Our programming language wasMATLAB .

B. Results

First, the following question naturally arises: At which
powersP will the nonlinear correction begin to be impor-
tant? And what magnitudes of the centerline deformationsr
=0d does this correspond to? To get insight into this issue we
constructed a number of figuressnot shown hered for the
surface heighthsrd vs r, for various temperature differences
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T−TC and beam radiiv0, and for various values ofP. For
each parameter set we made the calculation in two ways, viz.
when taking the nonlinear correction into account, and when
omitting it. Of course, there is a transitional region and no
sharp limit distinguishing the linear and nonlinear regions.
Our conclusions, based upon visual inspection of the curves,
were that under normal conditions the linear region can be
taken to prevail untilP<200 mW. WhenP.300 mW, non-
linear effects turn up. Generally, the nonlinear deformations
are higher than the linear ones.sTo give an example: AtP
=220 mW the nonlinear centerline deformation was found to
be only 2% higher than the linear deformation, whereas at
P=330 mW it was 5% higher.d

From Refs.f21,25g we recall that in the linear regime we
have the following simple formula for the centerline height
hlinsrd shere in physical variablesd:

hlinsrd =
P

2pcg
S ]n

]r
D

T
E

0

` kdk

1 + k2lC
2 e−k2v0

2/8J0skrd. s47d

In the following we show three figures, each of them corre-
sponding to given values ofT−TC and v0. Each figure is
based upon a full nonlinear calculation. First, Fig. 2 shows
how hsrd varies withr whenT−TC=2.5 K andv0=4.8 mm.
According to Eqs. s35d,s26d this corresponds to lC
=20.3mm, B=0.0560. The powers are P
=h300,600,1200j mW. As mentioned above, we had to re-
place “infinity” with a finite outer limitRe. Numerical trials
observing the sensitivity of calculated centerline deforma-
tions showed that the choiceRe=9 was large enough.sFor
instance, an increase ofRe from 9 to 10 would lead only to
minute differences, the first three digits in the centerline de-
formation being the same.d Because of the cylindrical sym-
metry, only one half of the displacementssr .0 in the figured
need to be shown. It is seen that both powers 600 and
1200 mW lead to deformations much greater than 20mm,
and are clearly in the nonlinear region. The theoretical de-
flections for the three given values of the power are read off

from the figure to beh12,56,112j mm, respectively.
Our choice of input parameters makes the figure directly

comparable to Fig. 6.1 in Casner’s thesisf24g. The experi-
mental centerline displacements estimated from the photos
are about 10mm for P=300 mW, 45mm for P=600 mW,
and 75mm for P=1200 mW. The theoretical predictions are
thus in this case larger than the observed ones, especially for
the highest value ofP. Moreover, one difference which is
most noticeable is the absence of the observed “shoulder” in
the theoretical solution in the case of largeP. The shoulder
occurs experimentally when the laser illumination is from
below. There is at present no theory capable of describing
this phenomenon. Mathematically, the establishment of the
shoulder seems to be related to an instability; the real deflec-
tion jumps from one class of solutions of the nonlinear dif-
ferential equation to another class. Video records actually
show “jumps” in the surface when it gets formed, thus sup-
porting our conjecture about an instability phenomenon. As
for the observedwidth of the surface displacement, there is
good agreement with the theoretical prediction.

Figure 3 shows analogous results for the caseT−TC
=2.5 K, v0=8.9 mm, thus a considerably broader beam.
Here lC=20.3mm, B=0.193. The powers are P
=h360,600,890j mW. In this case, the valueRe=7 was
found to be sufficient, for the same reasons as above. Our
results can be compared with Fig. 6.3 in Casner’s thesisf24g.
The theoretical centerline displacements for the three men-
tioned cases ofP are h10,19,47j mm, which all agree well
with the observed values. Also in this case there occurs a
shoulder experimentally, but it is not so pronounced as in the
previous case.

Finally, in Fig. 4 we show the caseT−TC=3 K, v0
=5.3 mm, corresponding tolC=22.1mm, B=0.0576, for
powersP=h300,590,830j mW. Again, the outer nondimen-
sional radiusRe=9 was found to be appropriate. The theo-
retical centerline deflections are now seen from the figure to
be h10,39,65j mm, respectively, for the given values ofP.
We may compare this with the photos shown in Fig. 2 in Ref.
f27g or Fig. VI.5 in f28g: The corresponding experimental
dispacements are abouth10,40,55j mm. Also this time we

FIG. 2. Theoretical heighthsrd of displaced surface vs radiusr
whenT−TC=2.5 K,v0=4.8 mm, for three different laser powersP.
The undisturbed surface is athsrd=0.

FIG. 3. Same as Fig. 2, but withT−TC=2.5 K, v0=8.9 mm.
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see that the agreement between theory and experiment is
good for low powers, but that the theory over-predicts the
displacement when the power gets large. The last-mentioned
effect is generally most pronounced when the radius of the
laser beam is small.

IV. SUMMARY AND FINAL REMARKS

The “giant” deformations of fluid interfaces recently ob-
tained in the experiments of Casner and Delvillef21,24–28g
with the use of moderate laser beam powersP sP typically
lying between 500 and 1000 mWd have accentuated the need
of taking into account nonlinear geometrical effects in the
theoretical description of the interface deformation. As a rule
of thumb, inferred from a visual inspection of the figures,
nonlinear effects are expected to be appreciable when the
deformations become larger than about 15mm. When the
radiusv0 of the laser beam is small, typicallyv,5 mm, a
power P,1 watt may easily lead to deflections around
100 mm. The physical reason for the occurrence of giant
deformations is the lowering of surface tension caused by
working with a phase-separated liquid mixture close to the
critical point.

The nonlinear governing equation in nondimensional
form can be taken as in Eq.s29d or, what was found more
convenient, as in Eq.s36d whereG=HR/K is considered as
the dependent variable. We solved the set of Eqs.s39d–s41d
numerically. As a consistency check, we made also an analo-
gous calculation starting from Eq.s29d, and got the same

results. Figures 2–4 show some examples of our calcula-
tions; these are all directly comparable with the Casner-
Delville experiment.

Some general conclusions that can be made from our cal-
culations, are the following:

s1d For given values ofT−TC andv0, a largerP causes a
larger deformation;

s2d for a givenT−TC, a smallerv0 causes a larger and
narrower deformation;

s3d for a givenv0, a smallerT−TC causes a larger and
narrower deformation;

s4d very large beam waistssv0,20–30mmd are not able
to cause a nonlinear deformation, not even for the largestP
and smallestT−TC investigated in the Casner-Delville ex-
periment;

s5d For small T−TC and smallv0 sfor instanceT−TC
=2.5 K andv0=4.5 mmd, a power of 300 mW is not enough
to cause a nonlinear deformation. However, a further de-
crease in temperature, such as to the valueT−TC=1.5 K,
will take also the 300 mW-induced deformation into the non-
linear regime.

All the items listed above are expected on physical
grounds. A large incident power concentrated on a narrow
cross section means a large electromagnetic field intensity
and thus a large surface force. The enhanced deformation for
small T−TC is due to the fact that the restoring buoyancy
force s,Drd and Laplace forces,sd vanish atT=TC; cf.
Eqs.s32d and s33d.

Concretely, when comparing our results with the Casner-
Delville observations, we find that for broad beams the
agreement between theory and experiment is quite good; cf.
our discussion of Fig. 3 above. There is however a consider-
able theoretical over prediction of the deflection in the case
of narrow beams and high powers. Most strikingly, this is
shown in the casev0=4.8 mm, P=1200 mW, as discussed in
connection with Fig. 2. The physical reason for this discrep-
ancy is not known. It may be related to the production of
heat in the liquid in the presence of the strong field, or to the
loss of radiation energy because of scattering from the non-
avoidable corrugations on the liquid interface. Perhaps the
most intriguing possibility is that the discrepancy is related
to the reflection of radiation energy from the interface
“shoulder,” which is seen to be produced in strong fields
when the illumination is from below. This effect is most
likely related to an instability; the system decides to switch
from one class of solutions of the nonlinear governing equa-
tion to another class. To our knowledge, no explanation ex-
ists of this effect.
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